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Abstract— Power amplifiers (PAs) are devices that amplify the 

signal applied to their input, and it is necessary that they do so 

with low energy use. In order to guarantee this, the signal 

manipulation must occur in a linear way, and situations involving 

higher orders need the application of linearization methods. 

Among these methods, neural networks can be mentioned, where 

the Group Method of Data Handling (GMDH) model stands out. 

Based on it, two programming logics were built that differ in their 

criteria for selecting neurons to be kept in the layers of the 

network. Then these logics were adapted to work with real-valued 

data, thus becoming real neural network structures. At the end of 

the processing of each sample, the Normalized Mean Square Error 

(NMSE) is calculated, reaching better results of -35.27 dB in 

extraction and -35.98 dB in validation. The good performance of 

the built topologies makes them efficient options in data 

linearization.  

Keywords—Power amplifiers, real neural network, Group 

Method of Data Handling. 

I. INTRODUCTION 

 Power amplifiers (PAs) are devices usually used in 
telecommunications that basically amplify the signal applied to 
their input. It is necessary that they demand low energy from the 
system in which they operate, and for that the PA signal must be 
processed in linear means [1].  

 However, in specific cases that require more power, the 
signal reaches higher orders, and thus linearization methods are 
used to maintain low energy consumption [2]. These methods 
can be approached in a logical-mathematical way, and some of 
them even involve the use of neural networks. Among the 
models of existing neural networks, those of the Feed Forward 
type stand out, which process data in a unidirectional way from 
input to output. In this topology, there is, for example, the Group 
Method of Data Handling (GMDH), which has a high capacity 
for organization and accuracy of results even with a large 
amount of information applied to the input [3].  

 The present work approaches the GMDH topology and uses 
it as a basis for the construction of two programming logics, 
which aim to linearize the signal coming from the PA. These 
structures differ in the way of neural organization, one being 
more rigorous than the other regarding the selection of data that 
will cross the layers of the network. Such structures called 

Embracing and Selective were discussed in [4] and their 
Expanded versions based on Laguerre basis functions were 
introduced in [5]. Considering that in [4] and [5] all codes were 
optimized to work with complex data, the contribution of this 
work is to adapt the original Embracing and Selective structures 
to work with real data. So, after the redefinition of input 
possibilities and manipulation of complex samples, 
organizational variations are tested according to the information 
entered in the input. At the end of each routine the Normalized 
Mean Square Error (NMSE) is calculated, which makes it 
possible to identify the best structure of the neural network, now 
real.  

II. MODELING PAS BEHAVIOR BASED ON GMDH 

 The GMDH model was initially developed by the Ukrainian 
professor Ivakhnenko in the mid-1960s, while studying 
linearization of input and output data. The model stood out for 
being a self-organizing neural network, capable of producing 
accurate results even when processing a lot of information [3]. 
The GMDH network is organized into layers, each of which has 
a certain number of neurons. Once the efficient modeling of the 
GMDH is known, it is up to the designer to adapt it according to 
his objective.  

 In the present work, the GMDH network was adapted to 
work with data from PAs, studying its behavior when processed 
by neural networks with three layers. The topology was 
designed so that the second layer has two neurons, while the 
third layer has only one. The number of neurons in the first layer 
is given by  

 Cr1 =
E!

2!(E - 2)!
 ,                                                                       (1) 

where Cr1 is the number of neurons in layer one and E is the 
number of inputs inserted into the network. The number of 
outputs of the layer is the same number of neurons present in it. 
Furthermore, the activation function contained in each one is 
given by  

 f(x) = m + nx1 + ox2 + px1x2 + qx1² + rx2²,                                 (2) 

where the subscripted indices 1 and 2 refer to each neuron input. 
The coefficients m, n, o, p, q and r are extracted in each layer 
and become essential, since they are used to produce the inputs 



of the next layer and also to study the validation of the entire 
structure. 

A. Embracing and Selective codes 

In [4] two codes were presented based on GMDH and that 
differ in the way of selecting the inputs of the layers, one being 
more rigorous than the other. The stricter one is called Selective 
– selecting neurons from the first layer –, while the second is 
called Embracing and selects only from the second layer. Both 
were trained with data from a PA and presented good results, 
becoming concrete options for signal linearization [4], and in the 
present work the Embracing and Selective codes are used in a 
real neural network. 

The Embracing code assumes the availability of all neurons 
in the first layer, extracting the coefficients through the Mean 
Square Error (MSE) only once. Then the network goes to a 
second layer with only two neurons, which select inputs from a 
set containing Cr2 possibilities, calculated by 

Cr2 =
Cr1!

2!(Cr1 - 2)!
 .                                                                           (3) 

Thus, at each value of E, the Embracing trains a certain 
number of routines in order to find the best neurons that will 
compose the neural network. The number of routines is 
calculated by combining 2 to 2 (number of neurons in the second 
layer) and Cr2 (number of available possibilities). Due to the 
adaptation to real data – which increases the complexity of the 
training – the possibilities of organization in relation to the 
original topology were reduced [4]. Fig. 1 shows how the 
Embracing method is organized. 

On the other hand, the Selective method selects neurons 
from the first layer, without the intermediate set Cr2. However, 
this method has two scenarios: repeating and non-repeating. 

In the first scenario, it is assumed that 3 neurons are selected 
from the Cr1 set, in which the output of one of them is repeated 
as an input in the second layer. So, the number of times the 
network is trained in the scenario with repetition is determined 
by the combination of 3 to 3 of Cr1, illustrated by Fig. 2. 

In the second scenario, it is assumed that 4 neurons are 
selected from the Cr1 set, and thus there are 4 distinct inputs in 
the second layer. In this way, the number of times the network 
is trained in the no-repeat scenario is determined by the 
combination of 4 to 4 of Cr1, as shown in Fig. 3. The total 
number of code routines for each value of E is given by the sum 
of trainings from both scenarios. 

 

  

 

 

 

 

 

Fig. 1 – Embracing design 

 

 

 

 

 

 

 

Fig. 2 – Scenario with repetition of the Selective 

 

 

 

 

 

 

 

Fig. 3 – Scenario without repetition of the Selective 

B. Adaptation and training for a real network 

 When working with real networks, it is necessary to adapt 
the source dataset – often complex – so that all samples assume 
the real form.  

 The modeling is done in baseband, so it always uses complex 
numbers. So, starting from a set of complex samples from a PA, 
its elements are called complex data. To obtain real data, this 
original complex set is manipulated and divided into its real and 
imaginary parts, as will be described in detail. The model that 
uses only real data is composed by two networks: the network 
that estimates the real part is called In-phase (I) Network, while 
the network that estimates the imaginary part is called 
Quadrature (Q) Network. At the end of all the processing, the 
analyzes are all done with complex numbers, and so the data that 
are as real components will be manipulated again to assume their 
complex form. 

 In details, the real topology presented in this work operates 
as follows: starting from a complex set, manipulations are made 
to form real matrices with all possible inputs of the GMDH. So, 
two independent GMDH networks were created: the In-phase (I) 
Network and the Quadrature (Q) Network [2], which are 
essentially the Embracing or Selective codes. The difference 
between them is the desired output, where in the In-phase 
Network it is defined by bncos(αn – θn), while in the Quadrature 
Network it is given by bnsin(αn – θn), where b is the modulus of 
the output sample, α is the angle of the output sample, θ is the 
angle of the input sample and n is the referenced instant of each 
one of them.  

 These two networks aim to separately process the data set, 
whose input – the same for both – is already in real form. At the 
end of processing, the output of each network is manipulated to 
form a complex number again and, with it, extract the NMSE 
and thus verify the accuracy of the project. The Fig. 4 shows a 
diagram to illustrate the general functioning of the network. 
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 To build the input matrices, the variable M is defined, which 
will adjust the number of columns in the matrix, where each 
column represents a possibility to be inserted in the GMDH. 
Given an original vector in complex form, increasing M will 
increase the number of possibilities when referencing the 
magnitude and angle of samples with increasingly past instants. 
For example, for M = 1 there are four inputs: an, an-1, cos(θn – θn-

1) and sin(θn – θn-1), where a is the modulus of the input complex 
sample, θ is the angle of the input complex sample and n is the 
sample instant. For M = 2, there are seven inputs: an, an-1, an-2, 
cos(θn – θn-1), sin(θn – θn-1), cos(θn-1 – θn-2) and sin(θn-1 – θn-2). 
And so the organization rule holds for any value of M.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 – General network operation 

 Therefore, each value of E has the number of possibilities of 
inputs offered by each value of M. With this, the GMDH 
network is trained h times, where h is given by the number of 
combinations of E in E and the number of columns in the matrix 
of actual inputs.  

 The code is designed to store the output vector of each 
routine in an array. Thus, when all the routines for an M and an 
E previously chosen are completed, there are two final output 
matrices with h columns: one for the In-phase Network and 
another for the Quadrature Network. 

 Then a third code works to combine the real and imaginary 
columns, assembling a complex number and enabling the 
calculation of the NMSE, which represents the accuracy of the 
structure, so the smaller its value, the smaller the error and the 
more accurate the calculation. Thereby, by identifying the best 
extraction NMSE, it is also possible to identify which value of h 
and which combination of output matrices led to this result, and 

with these data the validation NMSE is calculated. It is defined 
by 
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 ,                                                   (4) 

where yref(n) is the desired output at each instant, e(n) is the 
difference between the desired output and the estimated output 
at each instant, and N is the total number of samples.  

III. SIMULATION RESULTS 

 All the presented programming logics were built in the 
MATLAB software, using the mathematical tools offered by it 
[6]. The extraction of data from the PA had already been done 
previously, not being the main purpose of the present work [7]. 
These data are of floating-point double precision type, with 
3,221 extraction samples and 2,001 validation samples, coming 
from a class AB PA manufactured in GaN technology, 
modulated by a WCDMA 3GPP envelope signal with 3.84 MHz 
of bandwidth and with 900 MHz carrier frequency. For the 
analysis of input and output information, a Rohde and Schwarz 
FSQ vector signal analyzer was used, which has a sampling 
frequency of 61.44 MHz [7].  

In the simulations, the value of E was varied from 3 to 6, and 
the value of M was varied from 1 to 4. It is important to note that 
when M = 1 there are 4 possible input possibilities, and thus its 
use for E = 5 and E = 6 is not possible, since they demand more 
inputs than what is offered. Furthermore, the number of columns 
in the output matrix is different for the same M and the same E 
in the Embracing (only one scenario) and Selective (two 
scenarios) codes. 

 The results obtained with the Embracing and Selective codes 
when used as a real neural network are presented in Tables I to 
IV in which each one presents the data obtained with the 
variation of the value of M. From 1 to 4, each M offers four, 
seven, ten and thirteen possibilities of inputs, respectively. The 
tables show the variation of inputs, the number of trained 
routines and the NMSE (in decibels) of extraction and validation 
for each method.  

 The entire project was performed on a computer with an 11th 
generation Intel Core i5 processor, which has 6 cores and a base 
frequency of 2.4 GHz. It also has 8 GB RAM memory, SSD and 
Intel Iris X integrated video card. In it, for the extraction of 
coefficients with 3 inputs and M = 1, for example, the tic toc 
command of MATLAB indicates an execution time of 4.40 ms 
to perform MSE in the I network, and 3.75 ms to do the same in 
the Q one. 

   Table I - Results for M = 1 

 EMBRACING SELECTIVE 

Inputs 

 

Routines 

NMSE 
Ext. 

(dB) 

NMSE 
Val. 

(dB) 

 

Routines 

NMSE 
Ext. 

(dB) 

NMSE 
Val. 

(dB) 

3 4 -26.00 -26.10 4 -26.00 -26.10 

4 1 -25.98 -26.13 2 -26.95 -27.03 
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Table II – Results for M = 2 

 

Table III – Results for M = 3 

 

Table IV – Results for M = 4 

 

 The presented data show that the results improve as the value 
of M increases. This behavior is observed because there are more 
input possibilities available, which allows a more efficient 
organization of the neural network. It is also noted that the 
variation of E for the same M causes a change in the values of 
NMSE, and the increase in the number of inputs does not 
necessarily imply a decrease in the error. Thereby, being an 
empirical analysis, the same input can be used in more than one 
neuron in the first layer, and therefore does not guarantee 
improvements.  

 It is important to point out that the best performances are 
concentrated in the highest values of M, but it is also when the 
codes require a much larger number of simulations to find the 
best organization. Thus, it is necessary to analyze the cost-
benefit by the designer, aiming for the most accurate results 
through a more complex simulation. In this specific case study, 
the best trade-off is provided by applying 6 inputs in Selective 
method when M = 3. This case results in -34.74 dB as a NMSE 
of extraction, which is 0.53 dB highest than the best case 
(provided by applying 6 inputs to the Selective method when M 
= 4), and needs to run about 88% fewer routines than it. 

 In general, both structures present good performance and a 
similar behavior regarding the variation of E and M. In addition, 
it can be seen that the Selective code always presents a 
performance equal or superior to the Embracing, since it was 
developed with the objective of to be more accurate in your 
choice of neurons.  

  IV. CONCLUSIONS 

Given the importance of maintaining linearity in the 
processing of the PAs signal, it is necessary to study data 
manipulation methods to guarantee this. Among these methods, 
it can be mentioned the neural networks, explored in this work. 

Initially, two structures based on the GMDH model were 
built using programming logic, with the objective of 
manipulating the data from the PA and maintaining its 
linearization. These structures differ in the way they are selected 
for neurons, where one is more rigorous than the other, but both 
perform well. 

 In the work presented, these codes were adapted to operate 
with real data, being processed by two real neural networks that 
differ in the construction of the desired output. The targets of 
each network use the module and phase of each complex sample 
and, after training each routine, the accuracy of the project can 
be verified through the calculation of the NMSE. When 
achieving small errors in a wide range of organization routines, 
these codes are considered to reach the objective for which they 
were developed, becoming concrete options for data 
linearization. 

ACKNOWLEDGMENT 

The authors would like to acknowledge the financial support 
provided by National Council for Scientific and Technological 
Development (CNPq) under the Program PIBIC UFPR 2021. 

REFERENCES 

[1] S. Cripps, RF power Amplifiers for Wireless Communications, 2nd 

edition. Norwood, MA: Artech House, 2006. 

[2] ZANELLA, A. F.; LIMA, E. G. A GMDH based approach for the 

Behavioral Modeling of Radiofrequency Power Amplifiers. In: 19o 
Simpósio Brasileiro de Micro-ondas e Optoeletrônica e 14o Congresso 

Brasileiro de Eletromagnetismo, 2020. 19o Simpósio Brasileiro de Micro-
ondas e Optoeletrônica e 14o Congresso Brasileiro de Eletromagnetismo. 

p. 266-270. 

[3] IVAKHNENKO, A. G. The group method of data handling in long-range 
forecasting. Technological Forecasting and Social Change,v. 12, 2-3 

1978. 

[4] MACHADO, A. P. P.; LIMA, E. G. . Selective Algorithm for Group 
Method of Data Handling Applied to Power Amplifier Modeling. In: XXI 

Microelectronics Students Forum, 2021, Campinas. Proceedings of the 

XXI Microelectronics Students Forum, 2021. p. 1-4 

[5] MACHADO, A. P. P.; NYPWIPWY, V. B.; FRANÇA, C.; LIMA, E. G. 

Selective Algorithm for Expanded Group Method of Data Handling 
Applied to Power Amplifier Modeling. Accepted for publication in 

Journal of Integrated Circuits and Systems.  

[6] C. Moler, Numerical Computing with MATLAB. Philadelphia: SIAM, 

2004. 

[7] BONFIM, E.; LIMA, E. G. A modified two dimensional Volterra-based 
series for the low-pass equivalent behavioral modeling of RF power 

amplifiers. Progress In Electromagnetics Research M, Vol. 47, 27-35, 

2016.  

 EMBRACING SELECTIVE 

Inputs 

 

Routines 

NMSE 
Ext. 

(dB) 

NMSE 
Val. 

(dB) 

 

Routines 

NMSE 
Ext. 

(dB) 

NMSE 
Val. 

(dB) 

3 35 -28.22 -28.86 35 -28.22 -29.01 

4 35 -27.54 -27.55 70 -30.38 -30.64 

5 21 -27.50 -27.47 42 -32.17 -32.13 

6 7 -27.70 -27.82 14 -32.17 -32.13 

 EMBRACING SELECTIVE 

Inputs 

 

Routines 

NMSE 
Ext. 

(dB) 

NMSE 
Val. 

(dB) 

 

Routines 

NMSE 
Ext. 

(dB) 

NMSE 
Val. 

(dB) 

3 120 -29.50 -30.18 120 -29.50 -30.18 

4 210 -31.38 -31.40 420 -31.68 -32.26 

5 252 -30.71 -30.74 504 -34.74 -35.11 

6 210 -30.72 -30.72 420 -34.74 -35.11 

 EMBRACING SELECTIVE 

Inputs 

 

Routines 

NMSE 
Ext. 

(dB) 

NMSE 
Val. 

(dB) 

 

Routines 

NMSE 
Ext. 

(dB) 

NMSE 
Val. 

(dB) 

3 286 -30.34 -31.02 286 -30.34 -31.02 

4 715 -33.37 -33.77 1430 -34.38 -34.82 

5 1287 -34.15 -34.66 2574 -35.27 -35.98 

6 1716 -33.70 -34.38 3432 -35.27 -35.98 
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